Fractional Kinetic Equations Involving $p-k$-Mittag-Leffler Function

Gurmej Singh ${ }^{\text {a }}$, Mehar Chand ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Mata Sahib Kaur Girls College, Talwandi sabo, Bathinda-151302, India
${ }^{b}$ Department of Mathematics, Baba Farid College, Bathinda-1513002, India

Abstract

We develop a new and further generalized form of the fractional kinetic equation involving generalized $p-k$-Mittag-Leffler function. The solution of the fractional kinetic equation is obtained in terms of Mittag-Leffler function. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably) new results. Keywords: Fractional Kinetic Equation, $p-k$-Mittag-Leffler function, Laplace Transform. 2010 MSC: 26A33, 33C45, 33C60, 33C70

1. Introduction and Preliminaries

The two parameter Pochhammer symbol, recently introduced by Gehlot in [1] is defined as:

Definition 1. Let $\xi \in \mathbb{C} ; p, k \in \mathbb{R}^{+}-0 ; n \in \mathbb{N} ; \Re(\xi)>0$, then $p-k$ Pochhammer symbol is defined as:

$$
\begin{align*}
{ }_{p}(\xi)_{n, k} & =\left(\frac{\xi p}{k}\right)\left(\frac{\xi p}{k}+p\right)\left(\frac{\xi p}{k}+2 p\right) \cdots\left(\frac{\xi p}{k}+(n-1) p\right) \tag{1.1}\\
& =\frac{{ }_{p} \Gamma_{k}(\xi+n k)}{{ }_{p} \Gamma_{k}(\xi)} .
\end{align*}
$$

The two parameter gamma function is defined as [1]:
Definition 2. Let $\xi \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; p, k \in \mathbb{R}^{+}-0 ; n \in \mathbb{N} ; \Re(\xi)>0$, then $p-k$ Gamma function is defined as:

$$
\begin{equation*}
{ }_{p} \Gamma_{k}(\xi)=\int_{0}^{\infty} e^{-\frac{t^{k}}{p}} t^{\xi-1} d t \tag{1.2}
\end{equation*}
$$

[^0]Recently in [2], Gehlot introduced the $p-k$ Mittag-Leffler function defined as:
Definition 3. Let $p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then $p-k$ Mitag-Leffler function is defined as:

$$
\begin{equation*}
{ }_{p} E_{k, \lambda, \mu}^{\eta, q}(z)=\sum_{0}^{\infty} \frac{{ }_{p}(\eta)_{n q, k}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{z^{n}}{n!} . \tag{1.3}
\end{equation*}
$$

where ${ }_{p}(\eta)_{n q, k}$ is two parameter Pochhammer symbol defined in equation (1.1).

1.1. Special Cases

1. On setting $q=1$ in equation (1.3), we get the following form of k-Mittag-Leffler function as follows:

$$
\begin{equation*}
{ }_{p} E_{k, \lambda, \mu}^{\eta, 1}(z)=\sum_{0}^{\infty} \frac{{ }_{p}(\eta)_{n, k}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{z^{n}}{n!} . \tag{1.4}
\end{equation*}
$$

2. On setting $p=k$ in equation (1.3), we get the following form of k -Mittag-Leffler function as follows [3]:

$$
\begin{equation*}
{ }_{k} E_{k, \lambda, \mu}^{\eta, q}(z)=\sum_{0}^{\infty} \frac{k(\eta)_{n q, k}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} \frac{z^{n}}{n!}=G E_{k, \lambda, \mu}^{\eta, q}(z) . \tag{1.5}
\end{equation*}
$$

3. On setting $p=k, q=1$ in equation (1.3), we get the following form of k-Mittag-Leffler function as follows [4]:

$$
\begin{equation*}
{ }_{k} E_{k, \lambda, \mu}^{\eta, 1}(z)=\sum_{0}^{\infty} \frac{(\eta)_{n, k}}{\Gamma_{k}(n \lambda+\mu)} \frac{z^{n}}{n!}=E_{k, \lambda, \mu}^{\eta}(z) . \tag{1.6}
\end{equation*}
$$

4. On setting $p=k, k=1$ in equation (1.3), we get the following form of Mittag-Leffler function as follows [5]:

$$
\begin{equation*}
{ }_{1} E_{1, \lambda, \mu}^{\eta, q}(z)=\sum_{0}^{\infty} \frac{(\eta)_{n q}}{\Gamma(n \lambda+\mu)} \frac{z^{n}}{n!}=E_{\lambda, \mu}^{\eta, q}(z) . \tag{1.7}
\end{equation*}
$$

5. On setting $p=k, q=1, k=1$ in equation (1.3), we get the following form of MittagLeffler function as follows [6]:

$$
\begin{equation*}
{ }_{1} E_{1, \lambda, \mu}^{\eta, 1}(z)=\sum_{0}^{\infty} \frac{(\eta)_{n}}{\Gamma(n \lambda+\mu)} \frac{z^{n}}{n!}=E_{\lambda, \mu}^{\eta}(z) . \tag{1.8}
\end{equation*}
$$

6. On setting $p=k, q=1, k=1$ and $\eta=1$ in equation (1.3), we get the following form of Mittag-Leffler function as follows [4]:

$$
\begin{equation*}
{ }_{1} E_{1, \lambda, \mu}^{1,1}(z)=\sum_{0}^{\infty} \frac{z^{n}}{\Gamma(n \lambda+\mu)}=E_{\lambda, \mu}(z) . \tag{1.9}
\end{equation*}
$$

7. On setting $p=k, q=1, k=1, \eta=1$ and $\mu=1$ in equation (1.3), we get the following form of Mittag-Leffler function as follows [7]:

$$
\begin{equation*}
{ }_{1} E_{1, \lambda, \mu}^{1,1}(z)=\sum_{0}^{\infty} \frac{z^{n}}{\Gamma(n \lambda+1)}=E_{\lambda}(z) . \tag{1.10}
\end{equation*}
$$

2. Fractional Kinetic equations

The fractional kinetic equations play important role in the field of applied sciences and engineering. There is a rich literature available describing the extensions and generalizations of fractional kinetic equations involving many special functions (see for example [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

If an arbitrary reaction is described by a time dependent quantity $N=N(t)$, then the fractional differential equation between rate of change of the reaction, the destruction rate and the production rate of N was established by Haubold and Mathai in [16], is given as follows:

$$
\begin{equation*}
\frac{d N}{d t}=-d\left(N_{t}\right)+p\left(N_{t}\right) \tag{2.1}
\end{equation*}
$$

where $N=N(t)$ represents the rate of reaction, $d=d(N)$ the rate of destruction, $p=$ $p(N)$ the rate of production and N_{t} denotes the function defined by $N_{t}\left(t^{*}\right)=N\left(t-t^{*}\right), t^{*}>0$.

When spatial fluctuations and inhomogeneities in the quantity $N(t)$ are neglected, then we have the following special case of equation (2.1) as:

$$
\begin{equation*}
\frac{d N}{d t}=-c_{i} N_{i}(t) \tag{2.2}
\end{equation*}
$$

where $N_{i}(t=0)=N_{0}$ is the number density of the species i at time $t=0$ and $c_{i}>0$.
On removing the index i and integrating the standard kinetic equation (2.2), we have

$$
\begin{equation*}
N(t)-N_{0}=-c_{0} D_{t}^{-1} N(t), \tag{2.3}
\end{equation*}
$$

where c is a constant and ${ }_{0} D_{t}^{-1}$ is the special case of the Riemann-Liouville fractional integral operator ${ }_{0} D_{t}^{-\nu}$ defined as

$$
\begin{equation*}
{ }_{0} D_{t}^{-\nu} f(t)=\frac{1}{\Gamma(\nu)} \int_{0}^{t}(t-s)^{\nu-1} f(s) d s, \quad(t>0, R(\nu)>0) . \tag{2.4}
\end{equation*}
$$

The fractional generalization of the standard kinetic equation (2.3) is given by Haubold and Mathai [16] as follows:

$$
\begin{equation*}
N(t)-N_{0}=-c_{0}^{\nu} D_{t}^{-\nu} N(t), \tag{2.5}
\end{equation*}
$$

The solution of (2.5) is given as follows [16]:

$$
\begin{equation*}
N(t)=N_{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(\nu k+1)}(c t)^{\nu k} \tag{2.6}
\end{equation*}
$$

Further, Saxena and Kalla [20] considered the the following fractional kinetic equation:

$$
\begin{equation*}
N(t)-N_{0} f(t)=-c^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \quad(\Re(\nu)>0, c>0), \tag{2.7}
\end{equation*}
$$

where $N(t)$ denotes the number density of a given species at time $t, N_{0}=N(0)$ is the number density of that species at time $t=0, c$ is a constant and $f \in \mathcal{L}(0, \infty)$.

By applying the Laplace transform to (2.7) (see [24]),

$$
\begin{equation*}
L\{N(t) ; p\}=N_{0} \frac{F(p)}{1+c^{\nu} p^{-\nu}}=N_{0}\left(\sum_{n=0}^{\infty}\left(-c^{\nu}\right)^{n} p^{-\nu n}\right) F(p), \quad\left(n \in N_{0},\left|\frac{c}{p}\right|<1\right) . \tag{2.8}
\end{equation*}
$$

Let $f(t)$ be a real or complex valued function of variable t and p is a real or complex parameter, then Laplace transform of $f(t)$ is defined as (see [25])

$$
\begin{equation*}
F(p)=L\{f(t) ; p\}=\int_{0}^{\infty} e^{-p t} f(t) d t, \quad(\Re(p)>0) . \tag{2.9}
\end{equation*}
$$

3. Solution of generalized fractional kinetic equations

In this section, we will study the solution of the generalized fractional kinetic equations by considering generalized $p-k$ Mittag-Leffler function.

Theorem 1. If $a>0, d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>$ $0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-a_{0}^{\nu} D_{t}^{-\nu} N(t) \tag{3.1}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p^{(\eta)_{n q, k} \Gamma(\nu n+1)}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.2}
\end{equation*}
$$

Proof. Taking the Laplace transform to the both sides of equation (3.1) gives

$$
\begin{equation*}
L\{N(t) ; p\}=N_{0} L\left\{{ }_{p} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right) ; p\right\}-a^{\nu} L\left\{{ }_{0} D_{t}^{-\nu} N(t) ; p\right\}, \tag{3.3}
\end{equation*}
$$

now using the equation (2.9), we have

$$
\begin{equation*}
N(p)=N_{0} \int_{0}^{\infty} e^{-p t}{ }_{p} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right) d t-a^{\nu} p^{-\nu} N(p), \tag{3.4}
\end{equation*}
$$

further using equation (1.3) and interchanging the order of summation and integration, we have

$$
\begin{equation*}
N(p)+a^{\nu} p^{-\nu} N(p)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu}\right)^{n}}{n!} \int_{0}^{\infty} e^{-p t} t^{\nu n} d t, \tag{3.5}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
N(p)\left(1+a^{\nu} p^{-\nu}\right)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu}\right)^{n}}{n!} \frac{\Gamma(\nu n+1)}{p^{\nu n+1}}, \tag{3.6}
\end{equation*}
$$

which on simplification gives

$$
\begin{equation*}
N(p)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k} \Gamma(\nu n+1)}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu}\right)^{n}}{n!}\left\{p^{-(\nu n+1)} \sum_{r=0}^{\infty}\left[-\left(\frac{p}{a}\right)^{-\nu}\right]^{r}\right\} . \tag{3.7}
\end{equation*}
$$

Now taking Laplace inverse of equation (3.7) and by using the result given as follows:

$$
\begin{equation*}
L^{-1}\left\{p^{-\nu} ; t\right\}=\frac{t^{\nu-1}}{\Gamma(\nu)}, \quad(\Re(\nu)>0) \tag{3.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
L^{-1}\{N(p)\}=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k} \Gamma(\nu n+1)}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu}\right)^{n}}{n!} L^{-1}\left\{\sum_{r=0}^{\infty}(-1)^{r} a^{\nu r} p^{-(\nu n+\nu r+1)}\right\}, \tag{3.9}
\end{equation*}
$$

after simplification, we have

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k} \Gamma(\nu n+1)}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu}\right)^{n}}{n!}\left\{\sum_{r=0}^{\infty} a^{\nu r} \frac{(-1)^{r} t^{\nu n+\nu r}}{\Gamma(\nu n+\nu r+1)}\right\}, \tag{3.10}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p^{(\eta)_{n q, k} \Gamma(\nu n+1)}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!}\left\{\sum_{r=0}^{\infty} \frac{\left(-a^{\nu} t^{\nu}\right)^{r}}{\Gamma(\nu n+\nu r+1)}\right\} \tag{3.11}
\end{equation*}
$$

the above equation (3.11) gives the required result (3.2).

Theorem 2. If $d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.12}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p^{(\eta)_{n q, k} \Gamma(\nu n+1)}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.13}
\end{equation*}
$$

Proof. On setting $a=d$, the Theorem 1 reduce to the Theorem 2, so details are omitted here.

Theorem 3. If $d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, q}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.14}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n q, k} t^{n}}{\Gamma_{k}(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.15}
\end{equation*}
$$

Proof. Proof of Theorem 3 is similar to Theorem 1, so details are omitted here.

3.1. Special Cases

By setting different values of the parameters, certain interesting results are obtained as follows:

On setting $q=1$, results in Theorem1. Theorem 2 and Theorem 3 reduce to the following form:

Corollary 1. If $a>0, d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>$ $0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, 1}\left(d^{\nu} t^{\nu}\right)=-a_{0}^{\nu} D_{t}^{-\nu} N(t) \tag{3.16}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n, k} \Gamma(\nu n+1)}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.17}
\end{equation*}
$$

Corollary 2. If $d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, 1}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.18}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p^{(\eta)_{n, k} \Gamma(\nu n+1)}}{{ }_{p} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.19}
\end{equation*}
$$

Corollary 3. If $d>0, \nu>0, p, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 p} E_{k, \lambda, \mu}^{\eta, 1}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.20}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{p(\eta)_{n, k} t^{n}}{p \Gamma_{k}(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.21}
\end{equation*}
$$

When $p=k$ then the results in Theorem 1. Theorem 2 and Theorem 3 reduce to the following form:

Corollary 4. If $a>0, d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>$ $0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-a^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.22}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k^{k}(\eta)_{n q, k} \Gamma(\nu n+1)}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.23}
\end{equation*}
$$

Corollary 5. If $d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.24}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k^{(\eta)_{n q, k} \Gamma(\nu n+1)}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.25}
\end{equation*}
$$

Corollary 6. If $d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, q}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.26}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k(\eta)_{n q, k} t^{n}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.27}
\end{equation*}
$$

When $p=k, q=1$ then the results in Theorem 1. Theorem 2 and Theorem 3 reduce to the following form:

Corollary 7. If $a>0, d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>$ $0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, 1}\left(d^{\nu} t^{\nu}\right)=-a^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.28}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k^{(\eta)_{n, k} \Gamma(\nu n+1)}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.29}
\end{equation*}
$$

Corollary 8. If $d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, 1}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.30}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k^{(\eta)_{n, k} \Gamma(\nu n+1)}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.31}
\end{equation*}
$$

Corollary 9. If $d>0, \nu>0, k \in \mathbb{R}^{+}-0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0 k} E_{k, \lambda, \mu}^{\eta, 1}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.32}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{k^{(}(\eta)_{n, k} t^{n}}{{ }_{k} \Gamma_{k}(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.33}
\end{equation*}
$$

When $p=k, k=1$ then the results in Theorem 1. Theorem 2 and Theorem 3 reduce to the following form:

Corollary 10. If $a>0, d>0, \nu>0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-a^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.34}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n q} \Gamma(\nu n+1)}{\Gamma(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.35}
\end{equation*}
$$

Corollary 11. If $d>0, \nu>0, \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta, q}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.36}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n q} \Gamma(\nu n+1)}{\Gamma(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.37}
\end{equation*}
$$

Corollary 12. If $d>0, \nu>0, \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ and $q \in(0,1) \cup \mathbb{N}$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta, q}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.38}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n q} t^{n}}{\Gamma(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) \tag{3.39}
\end{equation*}
$$

When $p=k, q=1, k=1$ then the results in Theorem 1, Theorem 2 and Theorem 3 reduce to the following form:

Corollary 13. If $a>0, d>0, \nu>0 ; \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$ then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta}\left(d^{\nu} t^{\nu}\right)=-a^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.40}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n} \Gamma(\nu n+1)}{\Gamma(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) \tag{3.41}
\end{equation*}
$$

Corollary 14. If $d>0, \nu>0, \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.42}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n} \Gamma(\nu n+1)}{\Gamma(n \lambda+\mu)} \frac{\left(d^{\nu} t^{\nu}\right)^{n}}{n!} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.43}
\end{equation*}
$$

Corollary 15. If $d>0, \nu>0, \lambda, \mu, \eta \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0, \Re(\eta)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}^{\eta}(t)=-d_{0}^{\nu} D_{t}^{-\nu} N(t) \tag{3.44}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n} t^{n}}{\Gamma(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.45}
\end{equation*}
$$

When $p=k, q=1, k=1$ and $\eta=1$ then the results in Theorem 1, Theorem 2 and Theorem 3 reduce to the following form:

Corollary 16. If $a>0, d>0, \nu>0 ; \lambda, \mu \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0$ then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}\left(d^{\nu} t^{\nu}\right)=-a^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.46}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{\Gamma(\nu n+1)\left(d^{\nu} t^{\nu}\right)^{n}}{\Gamma(n \lambda+\mu)} E_{\nu, \nu n+1}\left(-a^{\nu} t^{\nu}\right) . \tag{3.47}
\end{equation*}
$$

Corollary 17. If $d>0, \nu>0, \lambda, \mu \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}\left(d^{\nu} t^{\nu}\right)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.48}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{\Gamma(\nu n+1)\left(d^{\nu} t^{\nu}\right)^{n}}{\Gamma(n \lambda+\mu)} E_{\nu, \nu n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.49}
\end{equation*}
$$

Corollary 18. If $d>0, \nu>0, \lambda, \mu \in \mathbb{C} \backslash k \mathbb{Z}^{-} ; \Re(\lambda)>0, \Re(\mu)>0$, then the equation

$$
\begin{equation*}
N(t)-N_{0} E_{\lambda, \mu}(t)=-d^{\nu}{ }_{0} D_{t}^{-\nu} N(t) \tag{3.50}
\end{equation*}
$$

has the following solution

$$
\begin{equation*}
N(t)=N_{0} \sum_{0}^{\infty} \frac{(\eta)_{n} t^{n}}{\Gamma(n \lambda+\mu)} E_{\nu, n+1}\left(-d^{\nu} t^{\nu}\right) . \tag{3.51}
\end{equation*}
$$

4. Conclusion

The fractional kinetic equations are studied involving $p-k$-Mittag-Leffler function. The results obtained are expressed in terms of Mittag-Leffler function. By giving different values to the parameters involved, we get a number of certain interesting results. Due to close relationship of $p-k$-Mittag-Leffler function with the others special functions we can obtain a further generalized fractional kinetic equations which can be very useful in various fields of basic sciences and engineering.

References

[1] K. S. Gehlot, Two parameter gamma function and its properties, arXiv:1701.01052 [math.CA].
[2] K. S. Gehlot, The p - k mittag-leffler function, Palestine Journal of Mathematics 7 (2).
[3] K. S. Gehlot, The generalized k- mittag-leffler function, Int. J. Contemp. Math. Sciences 7 (45) (2012) 2213-2219.
[4] G. A. Dorrego, R. A. Cerutti, The k-mittag-leffler function, Int. J. Contemp. Math. Sciences 7 (15) (2012) 705-716.
[5] A. K. Shukla, J. C. Prajapati, On the generalization of mittag-leffler function and its properties, Journal of Mathematical Analysis and Applications 336 (2007) 797-811.
[6] T. R. Prabhakar, A singular integral equation with a generalized mittag-leffler function in the kernel, Yokohama Math. J. 19 (1971) 7-15.
[7] G. M. Mittag-Leffler, Sur la nouvelle function $\mathrm{E}_{\alpha}(\mathrm{x})$, C.R. Acad. Sci. Paris 137 (1903) 554-558.
[8] P. Agarwal, M. Chand, G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering journal 55 (4) (2016) 3053-3059.
[9] G. Singh, P. Agarwal, M. Chand, S. Jain, Certain fractional kinetic equations involving generalized k-Bessel function, Transactions of A. Razmadze Mathematical Institute 172 (2018) 559-570.
[10] J. Choi, D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun. 20 (2015) 113-123.
[11] V. Chaurasia, S. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci. 317 (2008) 213-219.
[12] M. Chand, J. C. Prajapati, E. Bonyah, Fractional integrals and solution of fractional kinetic equations involving k-mittag-leffler function, Transactions of A. Razmadze Mathematical Institute 171 (2017) 144-166. doi:101016/j.trmi.2017.03.003.
[13] A. Chouhan, S. D. Purohit, S. Saraswat, On solution of generalized kinetic equation of fractional order, Int. J. Math. Sci. Appl. 2 (2012) 813-818.
[14] V. G. Gupta, B. Sharma, On the solutions of generalized fractional kinetic equations, Appl. Math. Sci. 5 (19) (2011) 899-910.
[15] A. Gupta, C. L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran. Mat. 32 (1) (2014) 181-189.
[16] H. Haubold, A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci. 327 (2000) 53-63.
[17] R. Saxena, A. M. Mathai, H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci. 282 (2002) 281-287.
[18] R. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic equations, Physica A 344 (2004) 657-664.
[19] R. Saxena, A. M. Mathai, H. J. Haubold, Solution of generalized fractional reaction-diffusion equations, Astrophys. Space Sci. 305 (2006) 305-313.
[20] R. K. Saxena, S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput. 199 (2008) 504-511.
[21] G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Physica D 76 (1994) 110-122.
[22] A. Saichev, M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos 7 (1997) 753-764.
[23] P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria Engineering journal 57 (2018) 1937-1942.
$[24]$ D. Kumar, S. D. Purohit, A. Secer, A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Mathematical Problems in Engineering (2015) 7doi: 10.1155/2015/289387.
[25] M. Spiegel, Theory and Problems of Laplace Transforms, Schaums Outline Series. McGraw-Hill, New York, 1965.

[^0]: Email addresses: gurmejsandhu11@gmail.com (Gurmej Singh), mehar.jallandhra@gmail.com (Mehar Chand)

